首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   3篇
测绘学   1篇
大气科学   6篇
地球物理   20篇
地质学   57篇
海洋学   6篇
天文学   85篇
自然地理   8篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   11篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
101.
The Shaw L-group chondrite consists of three intermingled lithologies. One is light-colored and has a poikilitic texture, consisting of olivine (many skeletal and euhedral) and augite crystals surrounded by larger (up to 1 mm) orthopyroxene grains; plagioclase occurs between orthopyroxene crystals and rare, small (<5 μm) patches of Si-K-rich glass or cryptocrystalline material occurs within the plagioclase. The skeletal olivine crystals contain 0.08–0.16 wt% CaO. Petrofabric measurements show that the c-axes of the olivines are aligned. The light-colored lithology also contains numerous vugs and vesicles: SEM studies reveal euhedral, possibly vapor-deposited, crystals of olivine and pyroxene in the vugs. A second lithologic type is dark-colored, contains remnant chondrules. and has a microgranular texture. Poikilitic orthopyroxene crystals, where present, are smaller (0.1–0.2mm) than they are in the light-colored lithology. Microgranular olivine crystals contain <0.08 wt% CaO: most contain 0.03–0.05 wt% CaO. Vugs are rare and Si-K-rich material is absent. The third lithologic type is gray macroscopically and seems to be intermediate between the other two. It has a well-developed poikilitic texture, but contains neither skeletal olivines (euhedral olivines are rare) nor Si-K-rich material: remnant chondrules are present but less abundant than in the dark lithology. A modal analysis of a 5300 mm2 slab shows, contrary to published opinions, that Shaw contains normal L-group chondrite abundances of metal and troilite. However, these phases are distributed irregularly throughout the meteorite. The light colored lithology is nearly devoid of metal and troilite and centimeter-sized metal-troilite globules occur between the three silicate lithologies. Wherever the metal occurs, it consists of nearly homogeneous martensite (13.9 wt% Ni) rimmed by kamacite (7.1 wt% Ni). These data indicate that Shaw is a partly-melted shock-breccia. The light-colored lithology must have been totally melted, as shown by the presence of aligned. CaO-rich, skeletal olivines; Si-K-rich residual material: and vugs and vesicles lined with euhedral crystals of mafic silicates. The dark areas appear to be unmelted target rock of L-group composition. Analysis of the growth of kamacite at the taenite (now martensite) borders indicates a cooling rate of ~ 3 C/103 yr. or one thousand times faster than most ordinary chondntes. The Shaw impact event probably formed a crater several kilometers in diameter on its meteorite parent body.  相似文献   
102.
The Johnstown meteorite is a brecciated orthopyroxenite (diogenite) containing coarsegrained centimeter-sized clasts of cumulate origin that have undergone subsolidus recrystallization. The brecciated portion is dominated by subangular fragments of orthopyroxene (Wo2–3En72–74Fs23–25) in a variably comminuted matrix of the same material. Minor and accessory phases include plagioclase (An82–90Ab10–18Or0–1), diopside (Wo44–45En46–47Fs9–10), olivine (Fo71–72), tridymite, troilite, metallic Ni-Fe (~3% Ni), and chromite (Cm71–80Hc1–8Sp11–19Mt2–4Uv1–3).The clastic component is parental to the brecciated matrix which contains no foreign lithic or mineralogic components. Siderophile trace element studies, however, reveal the presence of meteoritic (chondritic) contamination in the brecciated portion using unbrecciated clasts for indigenous values. Rare earth element abundances show a wide range of values for the light REE in different samples, although all samples exhibit a strong negative Eu anomaly, indicative of earlier plagioclase fractionation. Two pairs of adjacent brecciated and unbrecciated samples from different portions of the meteorite show, respectively, the most enriched and the most depleted light REE patterns. The variability in La content is over a factor of 100. However, in each case the REE pattern for the brecciated portion is very similar to that of the unbrecciated portion. These differences are attributed to sampling of variable amounts of residual, REE-enriched, trapped liquid. The most representative REE pattern for the bulk meteorite has an intermediate composition and was obtained from the largest sample. The data presented here indicate that Johnstown is a monomict breccia, in contrast to several other diogenites which may be considered to be polymict on the basis of their mineral compositions and/or clast populations.  相似文献   
103.
The Kenna ureilite was found in February, 1972 near the town of Kenna, Roosevelt County, New Mexico U.S.A., weighed 10.9 kg, and measured 26.7 × 14.7 × 14.2 cm; it is the seventh known ureilite. The meteorite is composed of xenoblastic olivine (Fo79.2), commonly rimmed by forsterite (Fo99), and pigeonite (En73Wo9Fs18), in a volumetric ratio of 3:1, set in a matrix of three carbon polymorphs (graphite, lonsdaleite, and diamond) plus nickel-iron metal and troilite. Some thin metalliferous veins penetrating silicate grains contain secondary inclusions of melt with high-calcium clinopyroxene (high-Ca, Mg-rich augite to augite), andesine, K-feldspar, chromite, and siliceous CaO- and alkali-rich glasses of variable compositions.Textural, mineralogical and fabric information suggest a complex history for Kenna, involving igneous, metamorphic and shock processes. The rock appears to have originated as an ultramafic cumulate whose texture and structure was modified by adcumulus processes and by solution and redeposition in a weak deviatoric stress field. A strong mineral elongation lineation was produced during this high-temperature phase accompanied by mild plastic deformation of olivine on the system 0kl[100]. Superimposed on this original texture and fabric are processes resulting from light to moderate (50–250 kbar) shock deformation, as manifested by fracturing of the silicates, slip parallel to (001) in olivine, and twin and translation gliding parallel to (100) in the clinopyroxene. Lonsdaleite and diamond probably formed during this shock phase, which may be associated with the break-up of the parent body, but the relative time of introduction of the carbon-rich matrix is still unresolved.  相似文献   
104.
The Plainview. Texas, meteorite is a polymict-brecciated H-group chondrite composed of recrystallized light-colored portions embedded in a well-compacted, dense, somewhat recrystallized, dark-colored matrix. Both portions consist of equilibrated silicates (H5 classification), but a small number of silicate grains and unequilibrated lithic fragments not compatible with equilibrated ordinary H-group material are present in the dark-colored matrix. Lithic fragments include: (i) dark-colored, more or less altered, type II carbonaceous chondrites. (ii) unequilibrated ordinary chondrites and (iii) light-colored, unequilibrated and equilibrated fragments, some of which are compositionally similar to the host. Also present are fragment-like dark areas that are highly-shocked host material and not true lithic fragments (pseudo-fragments). Conclusions: Plainview represents a complex regolith breccia formed by repeated impact episodes. Recrystallized, light-colored portions represent surface or near-surface material of a small (asteroidal-sized) parent body. Impacts broke up this material to form fine-grained, dark material which enclosed light-colored protolith. Lithic fragments (i-iii) and some unequilibrated silicate grains and chondrules (apparently derived from unequilibrated chondrites) were embedded in the dark matrix during these repeated impacts. Xenolitlils of carbonaceous and unequilibrated ordinary chondrites are either residues of projectiles that impacted the Plainview parent body, or material from coexisting regoliths impact-splashed into Plainview regolith. Chondrules and silicate grains in the dark matrix which differ from H-group material are likely related to these xenoliths and their regoliths. Light-colored lithic fragments may represent shock-melted chondritic material, sometimes compositionally-modified, or new, achondritic meteoritic types. Unequilibrated and carbonaceous lithic fragments in the dark-colored host matrix indicate that equilibration of the host occurred before incorporation of the fragments and that compaction and lithification of the Plainview regolith to form a coherent meteorite must have occurred at temperatures below 300°C and/or on a short time scale.  相似文献   
105.
We report the discovery and classification of 30 new meteorites found in or close to Roosevelt County, New Mexico, including two H3 chondrites and a ureilite; the others are equilibrated ordinary chondrites. Over 160 meteorites representing at least 100 different falls have been recovered from this region, mostly from wind blowout areas. As in Antarctica, small specimens predominate and irons, achondrites and C and E chondrites are rare. Paired specimens are also very difficult to identify.  相似文献   
106.
Aggregation of particulate organic matter (POM) and mineral grains may result in physical protection of organic matter (OM). To test this, phytoplankton cells of the dinoflagellate Scrippsiella trochoidea were inoculated with a natural bacterial assemblage and incubated with or without the clay montmorillonite. Within 5 h, aggregation of phytoplankton OM and clay resulted in transfer of the majority (∼80%) of OM into the >1.6 g cm−3 density fraction. Degradation of particulate organic carbon (POC), particulate nitrogen (PN), dissolved organic carbon (DOC), and dissolved and particulate total hydrolyzable amino acids (THAA), were modeled with a multi-G approach. Quantity of resistant OM was between two and four times larger during clay incubation relative to clay-free incubation. The two incubations did not exhibit significant differences in degradation state of particulate amino acids nor were there indications of preferential sorption of basic amino acids. The results suggest that a considerable fraction of phytoplankton OM can become resistant, at least on a timescale of weeks, mostly due to aggregation of POM and clay mineral grains.  相似文献   
107.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   
108.
We classified five new ordinary chondrites from North West Africa. NWA 3010 is an L6(S5), NWA 3011 is an L5(S5), NWA 3012 is an LL4(S5), NWA 3013 is an L5(S5), and NWA 3014 is an H4(S1). The meteorites experienced a range of terrestrial alteration, with NWA 3010 equal to weathering grade W2, NWA 3011 equal to W3, NWA 3012 equal to W3, NWA 3013 equal to W2, and NWA 3014 equal to W4.  相似文献   
109.
The sediment succession of Lake Emanda in the Yana Highlands was investigated to reconstruct the regional late Quaternary climate and environmental history. Hydro-acoustic data obtained during a field campaign in 2017 show laminated sediments in the north-western and deepest (up to ̃15 m) part of the lake, where a ̃6-m-long sediment core (Co1412) was retrieved. The sediment core was studied with a multi-proxy approach including sedimentological and geochemical analyses. The chronology of Co1412 is based on 14C AMS dating on plant fragments from the upper 4.65 m and by extrapolation suggests a basal age of c. 57 cal. ka BP. Pronounced changes in the proxy data indicate that early Marine Isotope Stage (MIS) 3 was characterized by unstable environmental conditions associated with short-term temperature and/or precipitation variations. This interval was followed by progressively colder and likely drier conditions during mid-MIS 3. A lake-level decline between 32.0 and 19.1 cal. ka BP was presumably related to increased continentality and dry conditions peaking during the Last Glacial Maximum (LGM). A subsequent rise in lake level could accordingly have been the result of increased rainfall, probably in combination with seasonally high meltwater input. A milder or wetter Lateglacial climate increased lake productivity and vegetation growth, the latter stabilizing the catchment and reducing clastic input into the lake. The Bølling-Allerød warming, Younger Dryas cooling and Holocene Thermal Maximum (HTM) are indicated by distinct changes in the environment around Lake Emanda. Unstable, but similar-to-present-day climatic and environmental conditions have persisted since c. 5 cal. ka BP. The results emphasize the highly continental setting of the study site and therefore suggest that the climate at Lake Emanda was predominantly controlled by changes in summer insolation, global sea level, and the extent of ice sheets over Eurasia, which influenced atmospheric circulation patterns.  相似文献   
110.
We have launched into near-Earth orbit a solar mass-ejection imager (SMEI) that is capable of measuring sunlight Thomson-scattered from heliospheric electrons from elongations to as close as 18 to greater than 90 from the Sun. SMEI is designed to observe time-varying heliospheric brightness of objects such as coronal mass ejections, co-rotating structures and shock waves. The instrument evolved from the heliospheric imaging capability demonstrated by the zodiacal light photometers of the Helios spacecraft. A near-Earth imager can provide up to three days warning of the arrival of a mass ejection from the Sun. In combination with other imaging instruments in deep space, or alone by making some simple assumptions about the outward flow of the solar wind, SMEI can provide a three-dimensional reconstruction of the surrounding heliospheric density structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号